PROS AND CONS OF LOW-FIELD MAGNETIC RESONANCE IMAGING IN VETERINARY PRACTICE

MARTIN KONAR, JOHANN LANG

Low-field (LF) (0.2–0.4 T) magnetic resonance (MR) imaging predominates in veterinary practice. Advantages of LF MR include reduced costs, better patient access, and greater safety. High quality examinations can be achieved using appropriate protocols and investing more scanning time than with high-field (HF) systems. The main disadvantage of LF MR is the reduced signal to noise ratio compared with HF systems. LF MR protocols for small animal brain and spine imaging are described.

Key words: brain, dog, low-field, magnetic resonance imaging.

Introduction

The definition of high-field (HF), mid-field (MF), and low-field (LF) magnetic resonance (MR) imaging is vague and has tended to change over time.1,2 For this review we use LF MR to mean field strengths of 0.2–0.4 T. It is difficult to describe in detail the distribution of magnetic field strengths in veterinary use; however, there are more MR scanners installed in private practices than in veterinary schools, and in private practices LF scanners predominate. LF MR imaging has been used extensively for veterinary patients with intracranial, spinal, and musculoskeletal conditions.3–13

Overview of Systems

In veterinary practices there are examples of dedicated veterinary LF MR scanners and LF MR scanners produced for human use (Table 1). Manufacturers designing systems for veterinary use usually offer adapted software (e.g., adapted slice orientation on the display, the possibility to insert species, and breed information), receiving coils optimized for veterinary anatomy, and specific applications support for veterinary needs. Purchase and maintenance costs are usually lower for veterinary than for human MR systems, but lower prices are accompanied by lower specifications, such as lower gradient slew rate and smaller volume of homogenous magnetic field, which limits the maximal field of view (FOV). Veterinary MR manufacturers are continually improving the specifications of their systems to compete with MR systems designed for humans, which tend to be more expensive, have better magnetic field homogeneity, larger FOV, stronger gradients (slew rate), multichannel receiver coils, and more recent sequences, such as diffusion-weighted imaging (DWI). However, potential disadvantages of MR systems designed for humans include coil design adapted to human anatomy (e.g., thorax, shoulder), software adapted for humans (e.g., patient data, slice orientation), and less enthusiasm for addressing special veterinary needs (e.g., adapting coil design).

Limitations of LF MR

The fundamental limitation of LF MR is the reduced signal to noise ratio (SNR) compared with HF MR imaging. This is generally associated with longer scan times and decreased resolution leading to less pretty, but usually still diagnostic images.14–17 Exceptions include special indications such as multiple sclerosis18,19 and high-resolution musculoskeletal imaging.20,21 Direct comparisons between images of equine cadaver limbs obtained using different magnetic field strengths found similar results.22,23

The compact magnet design of some veterinary scanners may not allow scanning of the caudal cervical or cranial thoracic spine in large dogs (from about 50 kg). Similarly in these scanners a small maximal FOV (around 15 cm) may necessitate frequent patient repositioning when examining the spine, thus making it more time consuming than with larger FOV systems. Total body LF MR imaging can be performed with high diagnostic accuracy,24 but is either very time consuming or must be limited to overview sequences. Even at 1.5 T, a total body MR protocol for imaging canine cancer patients requires 60–75 min.25

Susceptibility effects are less at low magnetic field strengths, hence the appearance of hematomas is different26–28 and the sensitivity of T2*-weighted images for detecting small foci of hemorrhage is decreased compared
with HF MR. Nevertheless, signal loss of hemorrhagic lesions on T2* weighting in comparison with T2 can be demonstrated in LF MR images (Fig. 1).

DWI can be performed with LF MR systems with comparable diagnostic accuracy for subacute ischemia in humans as that obtained using HF MR despite significantly longer scan time, lower resolution, and generally lower image quality. However lack of resolution is a much more important drawback of LF DWI for small animal patients. In the authors’ experience it does not add much to the diagnosis and is currently not recommended for the standard protocol. Similarly, although diffusion tensor imaging, perfusion-weighted imaging, fiber tractography, and functional MR imaging can be performed using LF MR, routine clinical use of these techniques for humans is restricted to field strengths of 1.5 T and above. The need for higher SNR for these studies is one of the main causes for the trend to higher field strengths in human medicine. Molecular imaging and MR spectroscopy also require high field strengths of at least 1 T. MR angiography can be performed using LF systems but with relatively poor resolution of intracranial vessels. Consipicuity of intracranial vessels depends greatly on magnetic field strength.

Advantages of LF MR

Cost. Purchase costs for LF MR scanners are considerably lower than for HF systems. LF MR scanners can be installed in smaller rooms, require a smaller Faraday cage, have usually less expensive maintenance contracts, and—in the case of permanent magnets—use less electricity and have no need for liquid helium. Additionally conventional anesthetic and monitoring equipment can be used with LF MR, just placed further from the patient, whereas in a HF environment MR-compatible equipment is mandatory.

Magnet design. Most of the LF magnets have an open design, with easy access to the patient. This facilitates anesthesia monitoring and the possibility of MR-guided procedures. Reduced susceptibility artifacts associated with LF MR are an advantage when considering interventions.

Safety. MR safety issues can be related to the static magnetic field, the time varying magnetic field, and the radiofrequency (RF) field. The static magnetic field has negligible direct biological effects; however, severe injuries and even lethal accidents have occurred due to the attractive forces of the strong magnetic field on ferromagnetic objects, such as gas bottles or instruments. This force is stronger and potentially more dangerous with HF systems.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>VetMR Grande</th>
<th>VetMR Grande</th>
<th>Hitachi</th>
<th>Siemens</th>
<th>Siemens</th>
<th>Siemens</th>
<th>Hitachi</th>
<th>Hitachi</th>
<th>Hitachi</th>
<th>Hitachi</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>VetMR</td>
<td>VetMR</td>
<td>Esaote</td>
<td>Esaote</td>
<td>Esaote</td>
<td>Esaote</td>
<td>Hallmarq</td>
<td>Hallmarq</td>
<td>Hallmarq</td>
<td>Hallmarq</td>
</tr>
<tr>
<td>Field strength (T)</td>
<td>0.25</td>
<td>0.25</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>Gradient strength (mT/m)</td>
<td>25</td>
<td>25</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Gradient slew rate (mT/m/s)</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Eq2 (Standing Equine MRI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field strength (T)</td>
<td>0.27</td>
</tr>
<tr>
<td>Gradient strength (mT/m)</td>
<td>20</td>
</tr>
<tr>
<td>Gradient slew rate (mT/m/s)</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Airis Mate</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Airis Mate</td>
</tr>
<tr>
<td>Field strength (T)</td>
<td>0.44</td>
</tr>
<tr>
<td>Gradient strength (mT/m)</td>
<td>24</td>
</tr>
<tr>
<td>Gradient slew rate (mT/m/s)</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 1. Overview on Available Low Field MRI Scanners

Philips and Toshiba do not offer low-field MRI systems on their website.
Another cause of MR-related injuries is heating of wires (e.g., ECG or pulse oximetry leads) by RF field-induced currents which has resulted in third degree burns in humans after HF MR imaging.\(^4\)\(^7\),\(^4\)\(^9\),\(^5\)\(^1\)–\(^5\)\(^3\) Severe burns have also been caused by direct contact with RF coils or even currents induced by skin contact between limbs.\(^5\)\(^4\),\(^5\)\(^5\) No reports of similar incidents could be found for LF MR.

Acoustic noise, which occurs with alterations in the gradient output, is reduced at lower field strengths.\(^5\)\(^6\)

Specific absorption rate (SAR). The FDA limits the maximum level of SAR value to 4 W/kg over 15 min (whole body average).\(^5\)\(^0\) Within these limits the effect on body temperature is negligible during clinical MR imaging. However, it should be noted that there is an exponential relationship between SAR-deposition and field strength: doubling the field strength leads to a fourfold increase in RF power deposition for a given MR pulse sequence.\(^5\)\(^7\) Also, the SAR guidelines were developed for awake adults, and standard MR sequences at higher field strengths can induce clinically significant hyperthermia in sedated children.\(^5\)\(^8\) For veterinary patients that are smaller than children and anesthetized, there is a risk of hyperthermia during HF MR. It is unknown to what extent the effect of SAR-related heating may be counteracted by cooling induced by anesthesia in an air-conditioned environment.

Metallic implants and foreign bodies. Metallic objects inside the body of a patient during MR are subjected to magnetic field interactions (translational attraction and torque), MR-related heating, and induced electrical currents in proportion to the strength of the magnetic field and to the switching rate of the gradients.\(^4\)\(^2\),\(^5\)\(^7\) Potentially hazardous heating of a nonferromagnetic stainless steel implant at 1.5 T has been demonstrated during MR imaging using sequences within recommended SAR levels.\(^5\)\(^9\) HF MR should be used with caution in patients known to have metallic implants or suspected of having a foreign body; however, there is the potential for an unexpected metallic inclusion in any patient.\(^6\)\(^0\) The main concern about metallic implants in LF MR is the potential for image artifacts rather than harm to the patient.

Image Artifacts

Although many types of image artifacts affect both LF and HF magnets, certain artifacts are more likely to be encountered during LF MR imaging. For example, motion artifacts occur independently of field strength, but the techniques to overcome them require increased imaging time (gating) or very fast sequences,\(^6\)\(^1\)–\(^6\)\(^4\) hence reduction of motion artifact is more readily achieved using HF MR.\(^5\)\(^7\),\(^6\)\(^5\),\(^6\)\(^6\) Truncation (Gibbs) artifacts\(^4\)\(^7\),\(^6\)\(^7\),\(^6\)\(^8\) are a result of insufficient data sampling which can occur in frequency and phase encoding direction. For in LF MR imaging a smaller number of phase encoding steps is a popular option to save time, this artifact will be seen more often in LF systems.\(^6\)\(^5\) The partial volume artifact can be seen when tissues of different signal intensity become part of the same voxel.\(^6\)\(^6\),\(^6\)\(^8\) This artifact also occurs in HF MR\(^6\)\(^9\) but is more of a problem when using thicker image slices, as is often the case in LF MR.

Certain artifacts are reduced when using LF MR. For example, spatial misregistration of fat signal at tissue borders (chemical shift) is directly proportional to the field strength and therefore much more obvious in HF MR imaging.\(^4\)\(^7\),\(^6\)\(^5\),\(^6\)\(^6\) Also, susceptibility artifacts in the vicinity of air- or bone-tissue interfaces or metallic implants are less marked in LF than HF MR.\(^3\)\(^0\),\(^6\)\(^6\),\(^7\)\(^0\)

Fig. 1. Swiss Warmblood mare, 185 kg, 4 month: fresh head trauma. (A) Sagittal fast spin echo T2 (TR 4000 ms, TE 100 ms, FA 90\(^\circ\)) shows a hyperintense mass lesion in the brain (arrow). (B) T2(*)-weighted GE image (TR 1037 ms, TE 50 ms, FA 25\(^\circ\)) shows a signal void in the center of the lesion caused by a susceptibility artifact associated with the presence of blood degradation products (methemoglobin, hemosiderin). Hematoma was confirmed pathologically. Airis II, 0.3 T. Images courtesy of the MR Center Berne, Vetsuisse Faculty, University of Berne, Switzerland.
Pulse Sequences in LF MR Neuroimaging

Spin Echo (SE) and Fast Spin Echo (FSE)

As in HF MR, the classical SE is usually only used for T1 weightings. All current LF MR systems offer FSE (aka turbo spin echo) for T2 and/or proton density weighted imaging. FSE enables shorter scan times, which facilitates increased patient throughput or can be translated into images with higher resolution and fluid contrast.41,42,71–73

Fat Suppression Techniques

The difference in precessional frequency (3.5 ppm) between fat and water is too small in LF MR imaging to allow selective chemical saturation (spectral fat suppression), hence this method cannot be used in LF MR.74 Instead fat suppression is accomplished using the short tau inversion recovery (STIR) sequence or the Dixon fat–water separation technique.

STIR is a robust fat-suppressing technique with high sensitivity for fluid and pathology.73–76 As an inversion recovery sequence the STIR gives low SNR; however, the contrast to noise ratio is excellent.74 With Fast STIR, signal and contrast can be further improved (Fig. 2).77–79 Furthermore STIR can be used to achieve excellent gray/white matter contrast (Fig. 3).

Fig. 2. Mixed breed dog, female, 18 kg, 5 years: Dorsal short tau inversion recovery (STIR) images of a subarachnoid cyst at the level of C3 (large arrows). (A) Fast STIR (TR 3920 ms, TE 30 ms, TI 80 ms); (B) GE STIR (TR 1780 ms, TE 25 ms, TI 75 ms). Both sequences have a slice thickness of 4 mm, but the Fast STIR has higher in plane resolution (matrix 256 × 240) than the GE (matrix 224 × 140). Acquisition time was approximately the same (around 5:30 min) for both sequences. Higher spatial resolution and better fluid/spinal cord contrast allow for a better delineation of the spinal cord (small arrows) and differentiation of the widened central canal (arrow heads) and the intramedullary edema caudally to the cyst. Note the higher sensitivity to the microchip artifact of the GE STIR sequence (asterisk). VetMR Grande 0.25 T. Images courtesy of Dr. Zeira, Ospedale Veterinario San Michele, Tavazzano con Villavesco, LO, Italy.

Fig. 3. Entlebucher Sennenhund, female, 25 kg, 8 years. A dorsal Fast short tau inversion recovery (STIR) image (TR 3500 ms, TE 25 ms, TI 110 ms) through the brain at the level of the thalamus provides excellent gray/white matter contrast. Aperto 0.4 T. Image courtesy of Dr. Tassaniprell, Tierklinik Hofheim, Hofheim, Germany.
The Dixon method of fat suppression uses the difference in precessional frequency of fat and water bound protons by acquiring 2 (two-point Dixon) or 3 (three-point Dixon) echoes at a different time.73,80,81 At one point in time, fat and water protons are in phase and their signals sum, whereas at another time they are out of phase and their signals cancel. By addition or subtraction of these echoes a water image (fat suppressed) and a fat image can be generated. In this way, fat-suppressed images can be acquired as T2* weighting, producing images sensitive for pathology with good SNR and resolution. When used with T1 weighting after contrast administration, this technique is highly sensitive for contrast uptake in lesions surrounded by fat, for example in the brachial plexus (Fig. 4). Alternatively, image subtraction of a precontrast T1-weighted series from the postcontrast series can provide a similar result with high conspicuity for contrast uptake.82

Fluid Attenuation Inversion Recovery (FLAIR)

FLAIR sequences are usually heavily T2-weighted sequences with selective suppression of the high signal from cerebrospinal fluid (CSF).83 FLAIR images have shown high sensitivity for various brain lesions in humans83–87 and veterinary patients.88–90 Although in one study most abnormalities detected by FLAIR imaging were also evident in T2-weighted images,91 the presenting and other authors consider FLAIR to be an essential part of a routine brain MR protocol88 because it can highly increase lesion conspicuity (Fig. 5) and it helps characterize lesions with high signal components in T2-weighted images that must be distinguished from CSF. FLAIR can also be used in spinal cord imaging, although its sensitivity has been questioned.92

FLAIR imaging requires a long inversion (1–2 s for 0.2–0.4 T) and long repetition time (at least 5 s) resulting in a long sequence time. To minimize the time necessary for FLAIR imaging, the number of acquisitions and/or phase encoding steps may be reduced, but at the expense of lower SNR. Sufficient signal and resolution can be achieved with a sequence duration between 6 and 8 min.

Balanced Steady State Free Precession Sequences (True FISP type)

True FISP is a gradient echo sequence providing contrast depending on the relation of T1 to T2 (signal amplitude \(M = 1/2 \times M_0 \sqrt{T_2/T_1} \)).93,94 T2 is quite independent of field strength whereas T1 relaxation is linearly related to field strength, hence this sequence is used more in LF systems. Use of True FISP in HF MR systems is largely restricted to special applications, such as cardiac, angiographic, abdominal, and fetal imaging.94,95 True FISP provides a high SNR, high-resolution image with good anatomical depiction and bright signal coming from free fluid, for example in the inner ear96 or the subarachnoid space (Fig. 6). True FISP cannot be used to replace T2 weightings because of its low sensitivity for fluid within...
tissues. Another disadvantage is its high sensitivity to field inhomogeneities, which can become problematic when using a large FOV or in the vicinity of metallic objects, e.g. microchips. MR manufactures have invented a confusing range of acronyms for the True FISP sequence (True FISP, *FIESTA, †BASG, ‡Hyce, §GBASS*).

High-Resolution T1-Weighted Three-Dimensional (3D) Gradient Echo

All LF systems allow high-resolution 3D T1-weighted imaging, but because manufacturers invent their own sequence names, the methodology used is difficult to determine. In most instances it seems to be an RF-spoiled gradient echo with 3D Fourier transformation. In LF MR this sequence enables acquisition of isotropic 1 mm slices of the whole brain in <6 min. Because of the high resolution, small and/or subtle contrast uptake can be detected. For example, facial nerve enhancement which has
Contrast Media

Conspicuity of gadolinium-containing contrast media uptake decreases with decreasing field strength,100–105 hence it has been proposed that the standard human gadolinium dose of 0.1 mmol/kg body weight (BW) should be doubled when using field strengths <0.5 T.2,106–108 Optimal dose for veterinary patients has not been thoroughly investigated. In the authors’ experience, 0.15 mmol/kg BW gadolinium (as diethylenetriaminepentaacetic acid bismethylamide) is satisfactory.

Protocols for Brain and Spine Imaging

Different LF MR systems have specific advantages or disadvantages, and some sequences run better on one system than on another. The following general recommendations are based on many years of experience of LF MR imaging with different machines. The optimal settings for image contrast, slice thickness, and resolution for specific MR systems are not addressed here.
The usual aims in MR imaging are to detect and delineate lesions and to determine their signal intensity in the standard sequences. In general, transverse T2 images are used to delineate lesions with respect to left/right and dorsal/ventral borders, dorsal FLAIR images are used to delineate rostral/caudal borders, and contrast uptake is evaluated with transverse pre- and post-contrast T1-weighted images. This basic protocol leaves enough time for additional sequences to address specific questions related to the anatomical region or suspected pathology.

The authors’ standard brain imaging protocol includes FSE T2 in transverse and sagittal plane, dorsal FLAIR, dorsal True FISP, transverse GE T1 or SE T1, and dorsal high-resolution 3D T1 images, both before and after and contrast administration. An average sequence time of 6 min results in total of 48 min for this protocol. With a few additional minutes for sequence planning, a practical total examination time of 60 min is required for the brain.

A minimal spine protocol for a dog with suspected intervertebral disc prolapse includes sagittal T2 and transverse FISP images. In any case a dorsal STIR should be included to exclude bone marrow and muscular pathologies, which could easily be missed in the other two sequences. A more thorough examination of the spine would include transverse T2 images (mainly for intramedullary lesions), transverse SE T1 and dorsal high-resolution 3D T1 images before and after contrast administration. For animals in which imaging of the entire spine is requested, sagittal T2 and dorsal STIR images is an expedient approach that enables most lesions to be excluded, although the small percentage of lesions that are visible only on postcontrast T1 images will be missed.

Summary

Field strength is not everything. Magnetic field homogeneity, gradient strengths and slew rate, coil design, scanner software, and operator skill also influence image quality. A modern LF MR imaging can produce images of equal or even better diagnostic quality than an old HF system (e.g., compared with Kraft and colleagues LF MR will continue to dominate veterinary practice, although the trend for increasing field strength in academic institutions may lead to a divergence between what is possible in a research setting and what is needed in practice to improve diagnostic capability for the “average” veterinary patient.

ACKNOWLEDGMENT

Disclosure: The authors declare no conflict of interest.

REFERENCES

106. Brekenfeld C, Foert E, Hundt W, Kenn W, Lodeann KP, Gehl HB. Enhancement of cerebral diseases: how much contrast agent is enough? Comparison of 0.1, 0.2, and 0.3 mmol/kg gadoteridol at 0.2 T with 0.1 mmol/kg gadoteridol at 1.5 T. Invest Radiol 2001;36:266–275.